Developing and Testing a Biotic Functional Assessment to Guide Adaptive Management Along the Middle Rio Grande, NM

Steven Albert, Parametrix, Inc.

Special Thanks

Ondrea Hummel and the U.S. ACOE Kevin Halsey and Jim Koloszar, Parametrix Todd Caplan and Chad McKenna, GeoSystems Analysis

Filling A Need

- Restoration work on the MRG needed a consistent, measurable way to determine success of restoration.
- Restoration is expensive and may take years to grow into suitable habitat – how do we know if we're on the right track?
- The usual metric, the presence or absence of species, may not always be the best measure of success or failure.
- If predicted outcomes are not achieved, can we control the direction of restoration?

Functional Assessment to Guide Adaptive Management

- 1) Develop FA Tool
- 2) Score Baseline Data
- Project Uplift after
 Planned Restoration
- 4) Conduct Restoration
- 5) Score Uplift and Adaptively Manage Sites
- Where do we work?
- What should we do?
- Did we succeed?
- What needs to change?

A Few Definitions...

- **Function** A specific environmental service (biotic/abiotic)
 - Broad: Water Quality, Songbird Diversity
 - Narrow: GW Infiltration, Willow Flycatcher Habitat Support
- <u>Attribute</u> A measurable characteristic supporting a function
 - % Ground Cover, Forb Diversity, Surface Water Flow
- <u>Uplift</u> Increase in ecological function (e.g. from restoration)

Southwestern Willow Flycatcher

- 1 of 4 subspecies
- Insectivorous, neo-tropical migrant
- Riparian obligate
- Listed in 1995

Reasons for decline:

Loss of habitat due to major changes to SW riparian ecosystems

Dam building, exotic species, drought, nest parasitism

Cooperators: ACOE, Reclamation NM Game & Fish

Empidonax traillii extimus

Rio Grande Silvery Minnow

- Algae-feeder
- Shallow, low velocity
- 7% of former range
- Listed in 1994

Reasons for decline: Loss of habitat due to major changes to SW river ecosystems

Dam building, water diversions, channel incision, sedimentation, loss of habitat complexity, esp. overbanking

Cooperators: ACOE and Reclamation

RGSM – Function Attributes

Floodplain Spawning & Rearing

- Duration of Spring Inundation
- % Ground Cover
- Velocity
- % Inundation

SWFL – Attribute Scoring

Cover and Nesting (40%) Width and Area of MU Visual Occlusion Ac of Dense Habitat Stem/Twig structure

Connectivity (20%) Distance to Breeding, Migration Sites Disturbance % Native Veg. Dist. to Water Foraging (40%) Area, Timing, Duration, and Depth of Inundation

Habitat Diversity Tree Cover

Attribute Scoring - GIS

MU Width	Score	0.8 -
<30'	0	0.0
30-50'	0.3	0.6 -
50-100'	0.5	0.4 -
100-200'	0.8	0.2
>200'	1	0.2 -

Attribute Scoring - Field Data

0 10-30% 30-60% 60-90% >90%

Attribute Scoring - Hydrographic Data (HEC-RAS)

Map Unit Level Assessment

Functional Performance Score for each MU (<u>the</u> <u>unit of management</u>)

Site Functional Acres - weighted by MU.

Functional Acres are the *Currency of Evaluation.*

Legend	Baseline Map Units: Site 4C		ale a		
Baseline Map Unit		0	500	1,000	P
obsenie map one				Foot	

Site 4CN: Restoration Approach

Post-Restoration Projections

Work Planned

- Non-native fuels reduction
- Re-vegetation
- Bankline terracing (lowering)
- High-flow channel
- Willow swale
- 1) Measure
- 2) Re-draw MUs based upon planned restoration
- Complete hypothetical datasheets
- 4) Project functional uplift

Constructed High Flow Channel

Revegetation Only

Baseline vs. Restoration - SWFL 3500 cfs at 10 years post-restoration

Baseline vs. Restoration - RGSM 3500 cfs at 10 years post-restoration

SWFL – Baseline & Uplift Scores at 10-years @ 3500 cfs (1.5 year return flow)

350	00 Base	eline			3500 Uplift		lift					
		Cover-							Cover-			
MU	Acres	Nesting	Foraging	Connect.	Score		MU	Acres	Nesting	Foraging	Connect.	Score
1	0.8	0.00	0.17	0.36	0.14		1	0.3	0.38	0.05	0.68	0.31
2	0.6	0.00	0.17	0.36	0.14		2	0.5	0.75	0.05	0.72	0.46
3	0.6	0.00	0.17	0.36	0.14		3	0.1	0.00	0.05	0.36	0.09
4	7.7	0.00	0.17	0.52	0.17		4	6.5	0.58	0.05	0.68	0.39
5	6.4	0.53	0.17	0.64	0.40		5	0.7	0.83	0.75	0.68	0.77
6	1.3	0.00	0.17	0.56	0.18		6	2.0	0.83	0.75	0.68	0.77
7	0.4	0.75	0.17	0.72	0.51		7	2.7	0.65	0.05	0.68	0.42
8	0.3	0.33	0.17	0.64	0.32		8	0.3	0.60	0.75	0.56	0.65
9	0.3	0.33	0.17	0.64	0.32		9	1.7	0.83	0.75	0.68	0.77
10	0.7	0.40	0.17	0.60	0.35		10	0.5	0.68	0.78	0.56	0.70
11	0.2	0.53	0.17	0.64	0.40		11	0.4	0.00	0.05	0.36	0.09
12	0.6	0.40	0.17	0.62	0.35		12	0.9				
13	0.2						13	2.0	0.60	0.05	0.68	0.40
14	0.3	0.00	0.87	0.72	0.49		14	0.2				
15	0.3	0.00	0.17	0.52	0.17		15	1.0	0.60	0.05	0.68	0.40
16	0.5	0.28	0.17	0.54	0.28		16	0.1	0.53	0.05	0.68	0.37
17	0.0						17	0.4	0.00	0.75	0.72	0.44
18	0.1	0.33	0.17	0.64	0.32		18	0.0	0.53	0.78	0.68	0.66
14b	0.1	0.00	0.80	0.72	0.46		14b	0.7	0.60	0.05	0.68	0.40
		0.23	0.25	0.58	0.30				0.53	0.34	0.63	0.47

Post-Restoration Projections

Site 4c	Baseline	3500 cfs	Uplift 3500 cfs		
21 Ac.	Functional Performance	Functional Acres	Functional Performance	Functional Acres	
SWFL	.30	5.8	.48	9.8	
RGSM	.14	.9	.42	6.1	

• Considerable uplift for RGSM

Swale connection via high-flow channel

- SWFL scores increase due to willow swale and ephemeral channel treatment
 - No difference between 3,500 cfs & 5,000 cfs (wetted area stays the same).

Summary

- FAs are a valuable tool in planning & implementing restoration
- Results are measurable, site-specific, and scalable
- They can be used predictively or for Adaptive Management are we on the right trajectory?
- "Open source" model easily adjusted with improved understanding

Other Applications

• Habitat mitigation banking